791 research outputs found

    tutorial surface emg detection in space and time best practices

    Get PDF
    Abstract This tutorial is aimed to non-engineers using, or planning to use, surface electromyography (sEMG) as an assessment tool in the prevention, monitoring and rehabilitation fields. Its first purpose is to address the issues related to the origin and nature of the signal and to its detection (electrode size, distance, location) by one-dimensional (bipolar and linear arrays) and two-dimensional (grids) electrode systems while avoiding advanced mathematical, physical or physiological issues. Its second purpose is to outline best practices and provide general guidelines for proper signal detection. Issues related to the electrode-skin interface, signal conditioning and interpretation will be discussed in subsequent tutorials

    Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices

    Get PDF
    This tutorial is aimed primarily to non-engineers, using or planning to use surface electromyography (sEMG) as an assessment tool for muscle evaluation in the prevention, monitoring, assessment and rehabilitation fields. The main purpose is to explain basic concepts related to: (a) signal detection (electrodes, electrodeā€“skin interface, noise, ECG and power line interference), (b) basic signal properties, such as amplitude and bandwidth, (c) parameters of the front-end amplifier (input impedance, noise, CMRR, bandwidth, etc.), (d) techniques for interference and artifact reduction, (e) signal filtering, (f) sampling and (g) A/D conversion, These concepts are addressed and discussed, with examples. The second purpose is to outline best practices and provide general guidelines for proper signal detection, conditioning and A/D conversion, aimed to clinical operators and biomedical engineers. Issues related to the sEMG origin and to electrode size, interelectrode distance and location, have been discussed in a previous tutorial. Issues related to signal processing for information extraction will be discussed in a subsequent tutorial

    Identification of periodic bursts in surface EMG: Applications to the erector spinae muscles of sitting violin players

    Get PDF
    Objective: This work compares two known and one novel techniques for the detection of surface EMG (sEMG) quasi-periodic burst-like signals and the estimation of their frequency. The novel method (ES) is based on the spectral analysis of the envelope signal, the other two methods use a fixed (FT) or automatically selected optimal threshold (OT). Methods: The methods are compared using both simulated signals and samples of High Density sEMG experimental signals collected using electrode arrays applied to the erector spinae muscles of violinists. Results: The ES method does not require thresholds. It detects presence/absence of bursts and their frequency, even in cases of a few missing bursts. It does not provide their duration. The FT method requires the selection of a fixed threshold value, estimates burst duration but is applicable only if bursts are present. The OT method identifies an optimal threshold, estimates burst duration but behaves irregularly when bursts are small or absent. Conclusions: The ES method provides the estimates closest to those of an expert human counter and is not sensitive to amplitude fluctuations. It is suitable when the general bursts periodicity is of interest even if some bursts may be missing. The FT and OT methods are sensitive to amplitude fluctuations and identify random threshold crossings as bursts even when burst activity is absent. Significance: Postural muscles are often activated in a burst-like fashion. The proposed ES method identifies presence/absence of bursts and their frequency, which is important for studying the neurophysiological mechanism generating them
    • ā€¦
    corecore